knob_gp2Lautstärkeregelungen in Digital-/Analog-Wandlern (DACs) arbeiten überwiegend digital, d.h. sie verändern das Signal VOR der Wandlung. Es wird also an den Bits des Audiosignals manipuliert.
Im unteren Preissegment der Wandler findet sich der Grund hierfür wohl schon in der Kostengünstigkeit dieser Lösung, jedenfalls wenn man die alternative Analogregelung der Lautstärke nicht gerade mit einem Billig-Potentiometer ausführen möchte.

Qualitätsbewusste Anwender geben traditionell einer analogen Regelung den Vorzug, die das Signal erst NACH der Wandlung verändert. Grund für diese Entscheidung ist der erwähnte, bei einer digitalen Steuerung stattfindende Eingriff in das Digitalsignal: Zur Lautstärkereduktion müssen Bits „kassiert“ werden, das originale Signal erfahre also — so das Argument — einen Verlust an seinem Inhalt.
In der Tat: Jede Halbierung der Lautstärke — also 6dB Reduktion — kostet bekanntlich 1 Bit. Danach bliebe beispielsweise beim Herunterregeln der Lautstärke um 24dB im Rahmen einer 16bit-Wiedergabe (CD) nur noch eine Auflösung von 12 Bit übrig, mit einem resultierenden digitalen Rauschabstand von noch rund 12 x 6dB = 72 (und nicht mehr 96) dB.

Aber ganz so einfach ist die Angelegenheit nicht.

Zunächst einmal muss der Verfechter einer analogen Regelung, will er nicht die beabsichtigten Qualitätsgewinne verspielen, ein Mindestmass an Aufwand treiben.
Eine gewisse Qualität sollte ein die Steuerung vornehmendes Potentiometer also haben. Aber Potentiometer sind in jedem Falle über die Jahre hinweg Verschleiss unterworfen, und auch ihre Genauigkeit hat Grenzen.
Höher geht es im Preis, wenn man eine Analogregelung haben möchte, die mit diskreten Widerständen arbeitet (angesteuert z.B. durch einen Drehschalter oder durch Relais). Hierbei ist die Lautstärkevariation nicht mehr stufenlos, sondern in durch die Schaltung vorgegebenen Sprüngen gestuft. Resultat ist zum einen die exakte Reproduzierbarkeit der Lautstärkestufe, vor allem aber auch grössere Verschleissfreiheit und eine deutlich höhere Kanalgleichheit der Lautstärke: Gute Widerstände haben im Vergleich zu einem Potentiometer bei weitem engere Toleranzen.

A9R704CNach Meinung vieler noch eine Qualitätsstufe höher (auch im Preis): die Regelung durch Transformatoren oder Autotransformatoren (engl. Autoformer). Hier werden variable Abgriffe an der Sekundärwicklung des Trafos bzw. Sekundärseite des Autoformers realisiert, die die Spannungsveränderung bewirken, ohne aber wie im Falle der Fest- oder Potentiometer-Widerstände elektrische Energie einfach zu „vernichten“ (korrekter gesagt: sie in Wärme umzuwandeln). Klarstellend sei allerdings hinzu gesagt, dass diese ohnehin noch seltener anzutreffenden sog. induktiven Lautstärkeregelungen in DACs bisher — soweit hier ersichtlich — nicht verfügbar, sondern nur in einigen Preamps anzutreffen sind (die dann teils auch nur passiv arbeiten, also als nicht-verstärkende Controller u.a. für Volumereduktion und Eingangsumschaltung).

Eine digitale Regelung hat es im Vergleich einfacher: Mit mathematischer Präzision kann in feinen Abstufungen und bei absolutem Kanalgleichlauf geregelt werden. Und es entfallen von vornherein etwaige Qualitätseinbussen am Signal durch die beschriebenen analogen Schaltungselemente zur Lautstärkereduktion.
Nur bleibt eben die angesprochene Sorge um das „Wegwerfen“ der Bits.
Aber diesem Problem kann begegnet werden durch
höhere Auflösungen in der digitalen Steuerung.

Moderne Regelungen beschränken sich nicht auf 16bit-Berechnung. Sondern sie machen das eingehende Signal zu einem Signal mit höherer Bittiefe, also etwa ein 16bit-Signal zu 24bit, oder 16- und 24bit-Signale sogar zu 32bit. Dies geschieht durch Anhängen von Null-Bits an die Originalbits. Auf diese Weise steigt der Rauschabstand der Regelung entsprechend an, bei 32bit auf 32 x 6dB = 192dB.
Eine Reduktion um 6dB auf halbe Lautstärke schneidet dann im Beispiel eines 16bit-Signals keines der originalen Bits mehr ab: Zwar verschiebt sich nach wie vor durch die Lautstärkehalbierung die 16er-Bitreihe um eine Stelle nach unten, die Originalinformation bekommt also einen anderen Stellen- und damit Lautstärkewert. Sie bleibt aber ansonsten unverändert erhalten, weil und solange bei der Verschiebung der Bits nach unten noch Platz ist (in Gestalt der vorher angehängten Nullen).
Ergebnis: Die originalen Bits einer 16bit-Datei werden erst tangiert, wenn sie soweit heruntergeschoben werden, dass es für 16 Bits zu „eng“ wird. Bei einer 32bit-Lautstärkeregelung kann also erst einmal im Wert von 16bit geschoben, sprich: abgeregelt werden, bevor Originalinformation angetastet wird. Das heisst: Um 96dB kann heruntergeregelt werden, bevor ein Informationsverlust eintritt. Im Falle einer 24bit-Regelung liegt der Spielraum immer noch bei 48dB.

In der Praxis bedeutet dies eine quasi verlustfreie Regelung.

Eine 32bit-Lautstärkeregelung ist noch nicht Standard, aber 24bit-Regelungen sind es inzwischen, einfach deshalb, weil die Wandler inzwischen standardmässig in 24bit arbeiten und also am Eingang des Wandlerchips ein 24bit-Signal aus der Lautstärkeregelung zu kommen hat.
Umgekehrt spielt eine 32bit-Auflösung in der Volumeregelung ihr Potential nur dann voll aus, wenn auch der nachgeschaltete D/A-Wandlerchip in 32bit arbeitet. Hat die digitale 32bit-Lautstärkeregelung dagegen an einen 24bit-Chip zu liefern, so werden am Chipeingang 8 von den 32bits wieder abgeschnitten.
Die Suche nach einem Gerät mit hochauflösendem Digital-Volume ist daher letztlich diejenige nach einem Gerät mit einem korrespondierend hochauflösenden D/A-Chip. Dass immer öfter 32bit-Chips verbaut werden, mag man also auch unter diesem Aspekt begrüssen.
Zu beachten auch: Hat ein Gerät eine Mixer- oder sonstige digitale Bearbeitungssoftware integriert, ist die (meist relativ hohe) Auflösung, in der der Mixer etc. arbeitet, allenfalls dann für die Lautstärkeregelung relevant, wenn der Mixer etc. nicht im Bypass ist, also das Signal nicht lediglich unverändert durchleitet.

Um Missverständnissen vorzubeugen: Wenn von einer „quasi verlustfreien Regelung“ die Rede war, so ist damit die rein mathematische Seite einer (hochauflösenden) digitalen Lautstärkeregelung gemeint.
In der Welt realer und damit immer auch analoger Schaltungen sind Rauschabstände von z.B. 192dB nicht erreichbar (übrigens auch für das menschliche Gehör nicht), und selbstverständlich gelten für jedes DAC-Gerät die Beschränkungen in der Dynamik, wie sie sich aus dem Konverter-Chip und den analogen Schaltungsteilen ergeben.

Diese Einschränkung gilt aber für digitale und analoge Lautstärkeregelungen gleichermassen. Jede Lautstärkereduktion, gleich ob analog oder digital, bedeutet üblicherweise eine Schmälerung der Dynamik: Die digital erfolgende Reduktion reduziert den Rauschabstand des DAC-Chips, die analoge denjenigen im analogen Schaltungsabschnitt des Gerätes.
Der Vollständigkeit halber sei ergänzt, dass es auf der analogen Seite vereinzelte Ausnahmen gibt, in Gestalt von Schaltungen mit in bestimmtem Volumebereich gleichbleibendem Rauschabstand: Reduktion der Lautstärke reduziert hier innerhalb gewisser Grenzen parallel auch das (analoge) Geräterauschen.

Die Summe des Rauschens in den verschiedenen Geräte-Segmenten ergibt die Gesamtdynamik. Welches Gerät von seiner Dynamik her besser abschneidet, hängt demnach von verschiedenen Faktoren ab.
Festzuhalten bleibt hier nur, dass eine digitale Lautstärkesteuerung nicht automatisch die schlechtere Variante sein muss (möglicherweise sogar die bessere sein kann), wenn sie nur genügend hochauflösend arbeitet.

Und letztlich treffen sich digitale und analoge Volume-Regelung in der allgemein geltenden Erkenntnis: Höhere Qualität hat in der Regel einen höheren Preis…